Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery
نویسندگان
چکیده
The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70-80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach.
منابع مشابه
Rapid biodiesel production using wet microalgae via microwave irradiation
The major challenges for industrial commercialized biodiesel production from microalgae are the high cost of downstream processing such as dewatering and drying, utilization of large volumes of solvent and laborious extraction processes. In order to address these issues the microwave irradiation method was used to produce biodiesel directly from wet microalgae biomass. This alternative method o...
متن کاملMicroalgae Potential and Multiple Roles—Current Progress and Future Prospects—An Overview
Substantial progress has been made in algal technologies in past few decades. Initially, microalgae drew the attention of the scientific community as a renewable source of biofuels due to its high productivity over a short period of time and potential of significant lipid accumulation. As of now, a technological upsurge has elaborated its scope in phycoremediation of both organic and inorganic ...
متن کاملUtilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load
Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than B...
متن کاملUtilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load
Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than B...
متن کاملFormic Acid and Microwave Assisted Extraction of Curcumin from Turmeric (Curcuma longa L.)
Curcumin is a natural bioactive compound originated from the rhizomes of turmeric (Curcuma longa L.). This study was performed to investigate formic acid and microwave assisted extraction of curcumin from turmeric (Curcuma longa L.). In order to enhance the curcumin extraction, different parameters such as particle size, effect of pretreatment with water, radiation intensity and type of solvent...
متن کامل